If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+.5x^2=150
We move all terms to the left:
x^2+.5x^2-(150)=0
We add all the numbers together, and all the variables
1.5x^2-150=0
a = 1.5; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·1.5·(-150)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*1.5}=\frac{-30}{3} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*1.5}=\frac{30}{3} =10 $
| 15x-65=130 | | 9x+18=5x+7+15 | | 19x/26x=180 | | -12(x-4)=48 | | y+17/10=7 | | X+1/3=x-1/3 | | 9x-14=8x-10 | | 5k+2=4k-8 | | 4(2x+1)=5(x-3) | | m−12)÷44=32 | | 6x+8-4=3x | | -2e=18 | | -9w+-4=4w-56 | | -8+6x-4x=6 | | 4x-3x+10=18 | | 6.7+4=4.7g+16 | | 3^2x-28*3x+27=0 | | x-19=3x+1 | | 6x+5=2x+5+4x | | n-7=-11 | | f²=16 | | .7c+12=−4c+78 | | 7x°=(3x+32)° | | 2x-121=12 | | 6)-22=-8+7y | | 3x+77=-7x+-3 | | 15-3t=-12 | | 4c+2=20 | | z+3z25=125 | | g4=3 | | 3x+⅘=7-2x | | 2x−1+7x=80 |